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Abstract

Plane steady contact problems of a rigid insulated cylinder sliding over a thermoelastic layer is solved. The heat
generation in the contact region is caused by friction forces. The problem is investigated by the method of integral
equations. An exponential series approximation is used for the evaluation of the kernels of integral equations. Numerical
results are presented in diagrams. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of the heat generation in the rubbing contact
of solids can be found in many papers. The plane steady
problems involving frictional heating for a thermoelastic
half-space were investigated in refs. [1-3]. But in many
cases the modelling of components of real frictional
couples by a half-space is impossible. Many pairs can be
often considered as a layer. The elastic contact problems
for a layer was investigated in ref. [4]. Plane thermoelastic
contact problems for a layer involving frictional heating
is studied in this paper. The problem is explored by the
method of integral equations. The numerical analysis is
done to study the effect of the layer thickness on the
level of generated temperature and on the limit value of
contact zone. The result obtained is compared with the
solution of the analogous problem for a half-space.

2. Problem formulation

The geometry of the contact problem is shown in Fig.
1. The rigid thermoinsulated cylinder (punch) of the
radius R is pressed by the load P to the upper surface of
thermoelastic layer of the thickness H and slides with the
constant velocity V in z-direction. The lower surface of
the layer is bounded with a rigid base. The friction force
o.,(x) is generated in the contact region (—a,a). It is
connected with the contact pressure p(x) by the Amon-
tons law

.,(x) = fp(x) (M

where /= const is the friction coefficient. It is supposed

that the heating in the contact region is produced by the
friction force. The generated heat is conducted into the
thermoelastic layer only. It is assumed that the thermal
process in the layer is steady. Convective radiation occurs
at the free boundary of the layer. The problem is con-
sidered to be planar.

Mathematically, the problem formulated above is
reduced to the solution of the thermoelasticity equations

0%u 0%u 0*v oT
2(1—v 1—2v)— =2(1 2
A0S+ 5 =2 @)
0*v 0% 52 oT
(1—2)— +2(1—v)— + =2(1+ve— (3
Ox2 02 0x dy ay
0’T 0°T
—+—=0 4)
ox?  0y?
with the following boundary conditions
K =g, <a y=0 ®)
oy =40 <a y=
K- ey, M>a y= ©
oy x,)), |x|>a y=
0T
K%y = hT(x.y). x| <o, y=—H ©)
O—,\‘)‘(x’y) = —p(X), |X| < q, Yy = 0 (8)
0,(x,»)) =0, |x|>a y=0 9)
0,(x,y) =0, [x[<c0, y=0 (10)
M(X,y) = U(X,y) = 03 ‘x| < 0, y= —-H (11)
qx) = Vo, Ix|<a y= (12)
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Fig. 1. Geometry of contact problem.
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“(0;1’}): — % h<a y=0 (13)
where u, v are displacements; ¢,,, 0,,, 0,, are stresses; T
is temperature field; p is contact pressure; ¢ is heat flux; v,
o, K are, respectively, Poisson’s ratio, thermal expansion,
thermal conductivity; /h, h, are radiation coefficients at
the upper and lower surface of the layer, respectively.

3. System of integral equations
The problems (2)—(13) was solved by using the Fourier

transform method. It was obtained that the temperature
field in the layer has the following form

1 a
T(x,y) = H(J [AT(x,0)+q(x)]M(x—x", y)dx’

(14)

where

_ [ cos(&z) ,
M(z,y) = JO Tty L, y)dg

(E+I( tanh(SH) +7,) sinh(Ey)

_ + (£ +7, tanh(SH)) cosh(Ey)]

LEy) =— . :
E(y+70) + (& +77,) tanh(EH)

and

7 =h/K, 7,=ho/K.

The vertical displacements of the upper surface of the
layer can be presented as the sum of the elastic and
thermal displacements

duv(x)  dv'(x) N dv™(x)
dx = dx dx

The elastic displacements are determinated from the for-
mula [4]

(15)

p(x)S(x—x")dx’ (16)

df(x) T—v (e
dx 7w

—a

where

5@ = L4510

S1(2) = f [ W) sin(z) de

0
_ 2k sinh(2EH) —4EH
2k coshQEH) + 1+ 12 +4E2H?

and p is a shear modulus.
The thermal displacements of the surface are obtained
in the forms

W) K=3—4v

d th 3 5 a
v) = fJ [AT(x",0)+g(x")]N(x—x") dx’ 17)
dx ),

where

_ (*™sin(¢z)
N(z) = L Py R(&)d¢

(€+I(S tanh(EH) +70)d, ()
+ (S + 70 tanh(SH))d, ()]
[EG+70) + (&2 +77,) tanh(EH)]
x [(1=2v)* 4+ E*H? +k cosh(EH))
di (&) = &H’+(1-2v)sinh’(EH)
—2(1—v)¢H sinh(2¢EH)
dy (&) = 2(1—v)[0.5sinh(2¢H) + EH cosh(2¢H))
and 0 = (1+v)o/K is the thermal distortivity.

The first integral equation of the problem under con-
sideration is obtained from satisfying the boundary con-
dition (13) with the help of relations (15)—(17) and (1),
(12). By rewriting of formula (14) at the boundary y = 0
with the help of relations (1) and (12), the second integral

R(&) =
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equation is obtained. Thus, the system of two integral
equations of the problem has the following form

1—v (¢ 1
—”J p(x/)[, = /de”
|, X =

— ]? r p(XYIN(x—x")dx’

—a

5h a
+?J TEING—x)dY = — 5. xl<a  (18)

—a

T(x)— niK Ja T(x)YM(x—x",0)dx’

V a
+J;7(J p(XYM(x—x,0)dx" =0, |x|<a (19

The contact pressure must satisfy the equilibrium con-

dition

J ) dy = P (20)

and physical conditions

p(—a) = p(a) = 0. e2y)
By introducing new variables and functions

s =xfa, r=xl|a, p*(r)=ap(x)/P,

T*(r) = KT(x)/f VP

the system (18), (19) can be transformed to the dimen-
sionless form (the asterisks are omitted)

ljl p(r) [L +S1(s—r)—0N(s—r)}dr
T, r—s

+ ?J'l T(r)N(s—r)dr
=-—"=—"T5 |5 <1 (22)
T(s)— %j] T(ryM(s—r)dr

+%Jl pr)M(s—r)dr=0, |s|<1 (23)

J] p(r)dr=1 (24)
p(=1) =p1)=0 (25)
where

_ofVuo . _ah
o= i (26)

and ay, Py are, respectively, the half-width of the contact
pach and the load in Hertz formula [5]

. 2P.R1—v
ag=7n —” .

4. Analysis of the kernels of integral equations

The dimensionless kernels of the system of integral
equations (22), (23) can be presented as

M(z) = My(z)+M,(2),
N(z) = No(2) + N, (2)

[ cos({z)
M,(z) = L {+Bi d¢,

sm((:z)
No(2) = J C+B
Si(2) =J Fy(0)sin({z) d¢,
M, (2) = j Fy(0) cos({z) di,

Ni(2) = J Fy (D sin({z) dC
Fo (D) = 1=m(0)

_LO-1
PO =2 g

_RO-1
PO =" 27)

The function Ny(z) is regular and M,(z) has a logarithmic
singularity. They were analysed in the paper [3].

The kernels Si(z), M,(z) and N,(z) depend on the
boundary conditions at the free surface of the layer. These
kernels are functions of the dimensionless thickness of
the layer 1 = H/a and Biot’s coefficient Bi, = ahy/K at
the lower surface. The system of integral equations of the
corresponding problem for a half-space [3] is obtained
from (22), (23) by omitting of the kernels S;(z), M,(z)
and N,(z).

The functions F({), k =0, 1, 2 tend to constants at
{ > 0 and decay exponentially for large {. These proper-
ties allow us to present these functions in the form of
finite sums

M
F() = Y [ e s,

m=1

k=0,1,2 (28)

where M is a finite number and the constants 8, /¥ are
unknown. For their calculations the squared error
method was used. This approach, which was applied in
paper [6], is outlined in the Appendix.

By help of formulae (27), (28) the kernels S,(z), M,(z)
and N,(z) may be presented in the forms
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5. Discretization

The first equation of the system (22), (23) is a Cauchy-
type singular integral equation of first kind for the
unknown contact pressure expressed in the terms of the
temperature and known functions. We present the func-
tion p(r) in the form

p(r) = o(r)/1-r7, (30)

where ¢(r) is a regular function. Thus, the conditions
(25) are satisfied automatically.

The equation (23) is a Fredholm-type integral equation
of second kind for the function 7(r). Therefore the
unknown temperature is the function of the class of lim-
ited functions.

By help of Gauss—Chebyshev quadrature method [7]
and rectangle quadratures, the discretized form of system
(22)—(24) is obtained

1 & 1
y0n+ E Z (p(rk)wk 5 +Sl (Sm*rk)ieN(Sm 7}"/()
k=1

Sm— Tk
OBi I 2
+— Z 7T(pk)N(Sm_pk)
T Sn
2 a* Py
=————5,, m=1,....n+1 3D
g P

Bi & R
T(pm) - ; Z T(pl\')Akm + E Z qu)(rk)M(pm 7"/() = Oa
k=1 k=1

m=1,...,n (32)

> W) =1 (33)

k=1

where
nk 1

lk:COS[m}, leIm, kzl,...,}’l

n2m—1

S, =Cos| = , m=1,...,n+1
2 n+1

pr = —142(k—0.5)/n, k=1,....n

X, T
A/cm = J\ M(u) du = ﬁ [Slgn(Xl)

X,

1
_Sign(Xz)]_E[No(Xl)_No(Xz)]

+ ;.f}f’ [A tan(X, /uf,) — A tan(X/up,)]

X, =2(m—k+0.5)/n,
X, =2(m—k—0.5)/n, kkm=1,...,n.

The introduction of the regularized constant 7y, in
equations (31) provides the existence of the solution [7].

6. Results and discussion

The dimensionless thickness A, Biot’s coefficients Bi,
Bi, and the parameter 0 are given. Note, that the semi-
width of the contact region a, i.e. the ratio a/ay is
unknown. We assume that the contact region is equal to
that in the Hertz problem for half-space (i.e. a/ay = 1),
but the ratio Py/P, which is needed to obtain this fixed
region must be found.

The numerical analysis was done to investigate the
effect of the layer thickness on the generated temperature,
on the limit value of the contact region size, as well as to
compare the obtained results with the solution of the
corresponding problem for a half-space.

Figure 2 shows the effect of the thickness y on the
dimensionless temperature at the surface y =0 for
0 = 0.5. The rise of the convective radiation leads to the
decrease of the temperature level. The growth of the layer
thickness causes the lowering of the temperature and the
results for the half-space [3] are obtained practically for
A=35.

The dependence of the ratio Py/P on the parameter 0
at fixed values of the layer thickness y is shown in Fig. 3
by the continuous lines. This ratio decreases with the
parameter 0 rising, i.e. with the growth of the thermal
effects. In this same manner such for the half-space
(4 = o) these dependencies may be approximated with
the very good accuracy (maximum deviation < 1%) in
the forms of linear relation

Py [0 Py
P+< —1>P0_0 (34)

where 0* is the limit value of the parameter 6 as the load
P tends to infinity and P, is the value of the load in the
isothermal problem for the layer. The parameters 6* and
P, depends on the thickness A. The results for 4 = 5 are
closed to the solution for the half-space [2]
0* = 0., = 1.18. The decreasing of the layer thickness
causes the limit value of the parameter 6 to decrease, i.c.
the load P, which is needed to obtain the contact area
ay = a, rises. The formula (34) gives

P 0

P 6%
This dependence at the fixed values of the layer thickness
is shown in Fig. 3 by the dotted lines.

—1=0. 35)
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Fig. 2. Effect of the thickness A on the dimensionless surface temperature.
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Fig. 3. Ratios Py/P and P,/P vs. the parameter 6.
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The numerical analysis shows that the Biot’s
coefficients Bi and Bi, do not affect the ratio Py/P and
therefore the contact semi-width.

Figure 4 shows the dependence of the ratio Py/P on
the layer thickness A for some values of the parameter 6.
The decreasing of the layer thickness as well as the rising
of the parameter 0 leads to the falling of the ratio Py/P.

The effect of the layer thickness on the limit value of
the parameter 0 is shown in Fig. 5 by the dotted line.
These dependencies may be closely approximated by the
formula
0, 0, 0,

2 2>025 (36)

Ox =0 — 72 _
Y L

where 0, = 0.069, 0, = 0.215, 0; = —0.044. In Fig. 5 the
continuous line correspond to the function (36). The
mean relative accuracy of this approximation is equal to
2.7%. Note that the terms with 1/4* and 1/4* can be
rejected in (36) in the problem for a thick layer.

Using the formula (26) for the 6 the limit value of the
contact semi-width may be presented in the form

(1—v)0*
aCl’ =
fVuo
or, taking into account the formula (36)
at = a® [1—ﬂ—“—2—ﬂ} 2> 0.25 (37)
A2 8

where ag = [(1—v)0,/fVud] is the limit value of the con-
tact semi-width for the half-space, and

a, =0.058, a, =0.182, a; = —0.037.

Thus, the contact area in the problem for the layer is
less that in the problem for the half-space.

7. Conclusions

The contact problem for the layer involving frictional
heating was solved. The effect of the heat generation on
the contact temperature and on the contact semi-width
was studied. The comparison of the results obtained with
that for the half-space permits us to make the following
conclusions:

—the temperature generated in the contact of the rigid
cylinder and the elastic layer is higher than that in the
contact of this cylinder and the half-space;

—the thermal effects produced by the frictional heating
are more important here than in the case of the half-
space. The contact region in this problem is smaller
than that in the corresponding problem for the half-
space;

—the approximate formula to compare the contact
region size in the cases of the layer and the half-space
was obtained. The limit values of the contact semi-

| 1 J

0.0 L& |
0 1 )

3 4 5
Fig. 4. Ratio Py/P vs. the thickness /.



V.J. Pauk | Int. J. Heat Mass Transfer 42 (1999) 2583-2589 2589

0.2 ' ‘
0 1 2

width are reached for the smaller values of the input
thermomechanical parameter 6.

These results can be used to study thermal regimes of
the real contact pairs.

Appendix

Let the function g({) decay exponentially for { — co.
We approximate this function by a function §({), which
is defined as

M
g =3 a,e " (A1)
m=1
where the constants a,,, m = 1,..., M and f§ are deter-
minated by the summation of the squared error
L
S=73 [g)—g)1. (A2)
=1
The minimizing condition
0S
20, k=1,....M (A3)
oda;.

gives the system of equations for the determination of
the constants @, m=1,..., M

M

Y. {I; exp [—(m +k)ﬁ51]}

m=1

= X g@exp(—kBL), k=1.....M (A4

which can be simplified if the points {, /=1,..., L are
chosen as

C/:lémux/La [= 17-~~7L~ (AS)
Thus

A

3 4 5
Fig. 5. Effect of the thickness 4 on the limit value of the parameter 0.

L+1
l_amk

Dl

expl—(m+ PG = 3 e =

5
1— [

k=1,....M (A6)

where

Qe = CXP [_ (m + k)ﬁCmdx/L] (A7)
and the system (A4) can be transformed

M 1—akt! L

Z a, {17"1} = Z 9(&) exp(—kBL)),
m=1 — Ak =1

k=1,....M. (A8)

The constant f§ is determined iteratively from the con-

dition of the value S minimum. The accuracy of this

method is provided by the choice of constants M, L and

Cmax'
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